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Abstract Solid electrolytes can be used in several different
types of chemical sensors. A common approach is to use
the equilibrium potential generated across a solid electro-
lyte given by the Nernst equation as the sensing signal.
However, in some cases, stable electrode materials are not
available to establish equilibrium potentials, so non-
equilibrium approaches are necessary. The sensing signal
generated by such sensors is often described by the mixed
potential theory, in which a pair of electrochemical
reactions establishes a steady state at the electrode, such
that the electrons produced by an oxidation reaction are
consumed by a reduction reaction. The rates of both
reactions depend on several factors, such as electron
exchange, active area, and gas phase diffusion, so estab-
lishment of the steady-state potential is complex and
alternative explanations have been proposed. This paper
will review and discuss the mechanisms proposed to
explain the sensor response of non-equilibrium-based
electrochemical sensors.

Keywords Electrochemical sensors . Mixed potential .

CO . NOx

Introduction

Information on gas composition is important in many
applications ranging from control of combustion processes
to environmental monitoring. To meet these needs, gas
sensors have been developed using a variety of different
sensing approaches [1–9]. One approach is built on the

pioneering work of Kiukkola and Wagner [10], who
demonstrated the use of solid electrolytes for measurement
of chemical potentials. Solid electrolytes are particularly
useful in sensors for high-temperature applications and can
be used in several different ways [11–18].

The most direct use of solid electrolytes in gas sensors is
for measurement of a gas species corresponding to the ion
that is mobile in the solid electrolyte. A common example
of this is the use of an oxygen ion conductor, such as yttria-
stabilized zirconia (YSZ), for the measurement of oxygen
partial pressure, as in the exhaust gas from an internal
combustion engine. Fortunately, however, detection is not
limited to the mobile species because an auxiliary electrode
can be added to provide sensitivity to another species by
equilibrating between the desired target species and the ion
that is mobile in the electrolyte. For example, the addition
of sulfates or carbonates to various solid electrolytes
(including oxygen-, sodium-, and lithium-ion conductors)
can be used for the measurement of SO2 and CO2 gases
[19]. However, this approach requires that the auxiliary
electrode material be stable in the sensing environment,
which limits the species that can be measured [20].

Although the Nernst potential on which potentiometric
sensors are based is established by equilibration between the
gas, electrolyte, and electrode, solid electrolytes can be used in
non-equilibrium conditions, in which a steady state between
electrochemical reactions establishes a potential that can be
used as the sensor signal. The establishment of this potential
can be described by the mixed potential theory that is
commonly used to describe the corrosion of metals [21].

Mixed potential theory

The mixed potential sensing mechanism is based on the
establishment of a steady state in which all the electrons
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produced by an oxidation reaction are consumed by a
reduction reaction [22–25]. This is essentially the same
process that occurs in an equilibrium sensor except that for
an equilibrium sensor the oxidation and reduction reactions
are the same reaction but in opposite directions, whereas for
a mixed potential sensor the oxidation and reduction
reactions are for different species.

The establishment of a mixed potential is illustrated
schematically in Fig. 1. The voltage in polarization plots is
often plotted as the abscissa, which is appropriate for the
results from a polarization experiment where the current is
measured at a fixed voltage. However, current is used as the
abscissa in Fig. 1 to reflect the idea that the currents
associated with the rates of the two reactions establish the
voltages. The upper two curves in Fig. 1a represent the
oxidation

2O2� ! O2 þ 4e� ð1Þ

and reduction

O2 þ 4e� ! 2O2� ð2Þ
reactions for the equilibration between oxygen gas and
oxygen ions in the electrolyte. The solid lines represent the
net current in each direction, which approach zero as the
voltages asymptotically approach the equilibrium redox
potential. The linear portion of the curve represents the
activation polarization, and the extrapolation of that linear
curve to the equilibrium potential (indicated by a broken
line) is the exchange current, which represents the rates of
the forward and reverse reactions at equilibrium. The
bottom portion of the figure shows a polarization curve
for the oxidation of CO

2COþ 2O2� ! 2CO2 þ 4e� ð3Þ
and a small portion of the polarization curve for the
reduction of CO2

2CO2 þ 4e� ! 2COþ 2O2� ð4Þ
which establish a lower equilibrium potential than that
established by oxygen gas.

The potentials for both reactions depend on the concen-
trations of the species. Using the reduction potentials, the
concentration dependence of the potential (E) is given by

E ¼ Eo � RT

nF
lnK; ð5Þ

where Eo is the standard reduction potential, R is the gas
constant, T is temperature, F is Faraday's constant, and n is
the number of electrons in the reduction reaction with
equilibrium constant K. If CO and O2 are both present at

non-equilibrium conditions, such as those represented in
Fig. 1a, the gases would react according to

2COþ O2 ! 2O2 ð6Þ
which would decrease the CO and O2 concentrations and
increase the CO2 concentration. These changes in concen-
tration would lead to an upward shift in the CO polarization
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Fig. 1 Schematic CO and O2 polarization curves. a Establishment of
mixed potential. b Effect of changing CO concentration on mixed
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curve (i.e., K for Reaction 4 decreases) and a downward
shift in the O2 polarization curve (i.e., K for Reaction 2
increases) until the equilibrium potentials become equal. In
most practical applications of CO sensors, this does not
occur (i.e., the gases do not equilibrate) so a mixed
potential is established. The mixed potential is labeled in
Fig. 1a and is the potential at which all the electrons from
Reaction 3 are consumed by Reaction 2. The effect of the
CO concentration on the mixed potential is shown in
Fig. 1b. As indicated by Eq. 5, a decrease in the CO
concentration will increase the reduction potential which
will lead to an increase in the mixed potential (EM).

Since only voltage differences rather than absolute
voltages can be measured, a reference electrode is needed.
The link to the reference electrode is provided by the solid
electrolyte in which ions are mobile, so that the concentra-
tion of ionic defects (e.g., oxygen vacancies in YSZ) is the
same throughout the bulk of the electrolyte and provides a
link between the equilibria at the two electrode surfaces
[11, 12]. In this paper, the voltages are reported with the
reference electrode as the negative terminal. Although not
always used, this convention is common, so if the signs of
the electrodes were not specified in a paper from the
literature, the reference electrode was assumed to be the
negative terminal. The reference electrode can be based on
an equilibrium potential, but in that case the reference and
sensing electrodes must be separated by a gas-tight seal.
However, if the reference potential is also based on a mixed
potential, both electrodes can be exposed to the test gas,
which, by eliminating the need for separate gas streams and
a gas-tight seal between the two electrodes, simplifies the
sensor design and thus reduces cost.

The differential response between the reference and
sensing electrodes in a mixed potential sensor is achieved
by selecting materials with different polarization behaviors.
Figure 2 shows the polarization curves for the oxidation of
CO (Reaction 3) and reduction of O2 (Reaction 2) on two
different electrodes: Reference electrode (Pt) and sensing
electrode (SE). Linear polarization curves and equal
exchange currents for the two electrodes are used in
Fig. 2 to simplify the diagram and more clearly illustrate
the trends in the mixed potentials established with different
overpotentials and gas compositions. Platinum is typically
used as the reference electrode, since it is a good catalyst,
which results in a low overpotential (shallow slope). In
Fig. 2a, the overpotentials for both the oxidation and
reduction reactions on the sensing electrode are increased
similarly (relative to Pt), in which case the mixed potential
is not changed, so the potential difference between the
reference and sensing electrodes is approximately zero.
However, if the overpotentials for the two reactions change
differently, the mixed potential is changed as shown in
Fig. 2b and c. Figure 2b shows the case where the

overpotential for the oxidation reaction on the sensing
electrode increases more than the reduction reaction on the
same electrode. In this case, the mixed potential on the
sensing electrode is higher than that on the Pt reference
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electrode, so a positive voltage will be generated. The
reverse case, where the overpotential for the oxygen
reduction reaction is increased more than the overpotential
for the oxidation reaction, is shown in Fig. 2c. In this case,
the potential at the sensing electrode is lower than that at
the Pt reference electrode, so a negative voltage will be
generated. The oxidation of CO is used as the example in
Figs. 1 and 2, but the same mechanism would apply to any
reducing gas (such as hydrocarbons) that would be oxidized
by oxygen.

A mixed potential can also be generated with an
oxidizing gas, such as NO2, which is illustrated in Fig. 3.
In this case, the relevant reactions are the oxidation of NO

2NOþ 2O2� ! 2NO2 þ 4e� ð7Þ

and the reduction of NO2

2NO2 þ 4e� ! 2NOþ 2O2� ð8Þ
which are analogous to Reactions 3 and 4, but occur at a
higher potential than the polarization curves for oxygen.
The result of this is that the mixed potential is established
between the oxidation of O2− by Reaction 1 and the
reduction of NO2 by Reaction 8. Figure 3a shows that when
the overpotential for the oxidizing reaction on the sensing
electrode increases more than that for the reduction
reaction, the mixed potential on the sensing electrode is
higher than that on the reference Pt electrode, so the voltage
difference is positive. As with the reducing gas shown in

Fig. 2, a change in which reaction overpotential is most
affected by the electrode material reverses the sign of the
voltage. Figure 3b shows that a negative voltage is
generated when the overpotential for the reduction reaction
on the sensing electrode is increased more than the
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overpotential for the oxidation reaction. Thus, the sign of
the response depends on the relative equilibrium voltages of
the two reactions (i.e., oxidizing or reducing gas) and the
overpotential that is most increased on the sensing
electrode.

Figure 1b shows how the mixed potential on an
electrode is changed by a change in gas composition.
However, if the reference electrode is placed in the sample
gas, which as noted above is a major advantage of mixed
potential based sensors, the mixed potentials at both the
sensing and reference electrodes will be affected. This is
illustrated in Fig. 4, which includes the polarization curves
for the oxidation of CO for two different CO concen-
trations. If the oxygen partial pressure is not changed, then
the polarization curves for O2 reduction will not change.
Since both the reference and sensing potentials increase, the
difference between the two mixed potentials is smaller than
the difference between the two mixed potentials at the
sensing electrodes for the two CO concentrations.

The electrochemical reaction rates can be limited by
other factors, such as mass transport from the bulk gas to
the electrode surface. In this case, the polarization curve is
affected as illustrated in Fig. 5. In particular, at a certain
overpotential, the current becomes limited by transport of
gas to or from the electrode surface and does not increase
with further increase in overpotential. Figure 5a shows a
case in which the oxidation of CO reaches a plateau. Even
though, in this example, the saturation current is the same
for the two electrodes, the mixed potential is different
because of the different overpotentials for the oxygen

reduction reaction. Figure 5b shows the effect of a change
in CO concentration in the case of concentration polariza-
tion. In addition to the shift in the potential of the
polarization curves (lower potential for higher CO concen-
tration), as in Figs. 1b and 4, the limiting current can also
change, since the maximum rate of supply of CO (in this
example) will depend on the CO concentration in the bulk
gas (larger current for higher CO concentration). This
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change in the limiting current is the same as that used in
amperometric sensors based on solid electrolytes. The result
of these two factors is a larger (more negative) voltage with
increasing CO concentration.

Non-equilibrium sensor performance

One of the simplest uses of a mixed potential is in a sensor
with a Pt reference electrode and an Au sensing electrode
for the measurement of CO. Figure 6 shows that the
overpotential for the reduction of O2 on a cerium
gadolinium oxide (CGO) electrolyte with an Au electrode
is higher than that with a Pt electrode [26]. The schematic
in Fig. 2c indicates that an increase in the overpotential for
oxygen reduction leads to a decrease in the mixed potential
voltage, which would result in generation of negative
voltage. A negative voltage has been observed for CO
sensors with Pt and Au electrodes as shown in Fig. 7 [26–
33]. The increased response with decreasing temperature of
the sensors with CGO electrolytes shown in Fig. 7
correlates with the increasing overpotential with decreasing
temperature shown in Fig. 6. In addition to the oxygen ion
conducting electrolytes shown in Fig. 7 (e.g., samarium-
doped ceria and YSZ), a sodium ion conducting electrolyte,
beta alumina, has also been used in CO sensors with Au
and Pt electrodes [34–36]. The sodium ion conducting
electrolyte can be used for measurement of the mixed
potential because the equilibrium between sodium oxide in
the sodium beta alumina acts as an auxiliary electrode by
providing equilibration between oxygen and sodium.

The addition of an oxide can inhibit microstructural
changes in the Au electrode and thus improve sensor
stability, particularly at high temperatures where sintering

can occur [33]. Semiconducting oxides can also be used as
the electrodes, some examples of which are shown in Fig. 8
[27, 37–43]. Several of these oxides generate negative
voltages similar to Au electrodes, but there have been
reports of positive voltages for LaFeO3, La0.8Sr0.2O3, and
La2CuO4 electrodes [41–43]. Although the responses for
sensors with LaFeO3 or La0.8Sr0.2O3 electrodes are rela-
tively small, the response with a La2CuO4 electrode is
large.

The largest response for a LaCu2O4 electrode was found
at 300 °C, but this signal was not stable, in that the signals
for increasing and decreasing gas concentration were
different [43]; 300 °C was also the temperature at which
the rate of CO desorption, according to temperature-
programmed desorption (TPD) results, was maximum. As
the temperature increased above 300 °C, the desorption and
sensor signal decreased, so the response was attributed to
adsorbed species. 300 °C was also the temperature above
which the oxidation of CO occurred more slowly on
La2CuO4 than on Pt according to temperature-programmed
reaction (TPR) experiments. The slower oxidation on CO
could lead to a mixed potential response with a positive
sign if the slower rate were due to an increased over-
potential for the oxidation of CO (see Fig. 2b) on La2CuO4.

The response of a sensor with Au and Nb2O5-covered
Au has also been attributed to CO adsorption based on the
absence of any catalysis of the CO oxidation for either
electrode material as measured with TPR [44]. The
response is attributed to a shift in the Fermi level of the
semiconducting electrode due to adsorption on the elec-
trode surface, but the mechanism by which this change
relates to the electrochemical potentials in the solid
electrolyte has not been described. Although both Au and
Nb2O5-covered Au do not catalyze CO oxidation, there
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could still be a difference in their polarization behaviors, so
a mixed potential response is possible. The changes in
mixed potentials generally increase as the magnitude of the
overpotential increases (i.e., steeper slopes in Figs. 1, 2, 3,
4, and 5), so even a relatively small difference in
overpotentials may generate a measurable response.

As mentioned above, the mixed potential mechanism can
be applied to other reducing gases, some examples of which
are shown in Fig. 9 [32, 45–50]. Sensors with Pt and Au
electrodes respond to hydrocarbon gases and the response
increases with increasing molecule size (i.e., C2H4 to
C4H8). A similar trend is observed using an oxide electrode
(In2O3+MnO2), but the response of the oxide electrode is
larger. An oxide electrode (In2O3) has also been shown to

respond to very small (sub parts per million) levels of
C3H6. Figure 9 also shows that the sensor response can be
changed by doping the electrolyte. In particular, the
addition of titanium to the electrolyte leads to an increased
response to C3H6, which illustrates the importance of the
electrode–electrolyte interface in the polarization behavior.
In addition to changes in the magnitude of the sensor
response, changes in the sign can occur, as has been
observed between CO and C3H6 for an Nb2O5 electrode
[51]. The differences between the responses of different
electrodes change with temperature, which provides an
additional variable in the design of sensing systems for
mixed gases, since multiple sensitivities can be obtained,
even for a single sensing element, by varying the test
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temperature. The ability to respond to multiple gases
expands possible sensor applications and also creates
challenges in obtaining satisfactory selectivity in multicom-
ponent gases.

Another important application of non-equilibrium-based
sensors is for the measurement of NOx. Although
equilibrium-based NOx sensors have been reported, they
have limited applicable ranges, so non-equilibrium-based
sensors are more promising [52]. The equilibrium between
the two common NOx gases

2NOþ O2 Ð 2NO2 ð9Þ
indicates that the NO2 is favored at low temperatures and
high oxygen partial pressures. In particular, the Gibbs
energy for Reaction 9 is 0 at 491 and 235 °C for oxygen
partial pressures of 105 and 103 Pa, respectively [53]. Since
these conditions are similar to common sensing conditions,
measurement of both gases by non-equilibrium sensors is
possible.

The polarization behavior of NO2 sensors was discussed
above in Fig. 3, while that of NO would be analogous to
CO described in Fig. 2. Although both sensors are based on
the same reactions, the positions of the polarization curves
relative to those of oxygen are different due to the different
gas compositions (i.e., NO/NO2 ratio). The responses of
mixed potential gas sensors for NO and NO2 are typically
opposite in sign. The generally observed negative potential
for NO and positive potential for NO2 is consistent with the
discussion above and indicates that the oxygen reaction
controls the sensor response [54]. However, by applying a
potential between the reference and sensing electrode,
effectively shifting the relative positions of the polarization
curves, the relative response to NO and NO2 can be

changed [55–58], which provides means for optimizing the
sensor selectivity for a particular application.

The outputs of some NO2 sensors with YSZ electrolytes
and WO3 electrodes are shown in Fig. 10 [41, 42, 59–67].
In one case [63], a tubular configuration, in which the
electrodes were separated so the reference electrode could
be exposed to a separate gas, was used to increase the
sensor output. As discussed above, the potential of a
reference electrode in the test gas, as in a planar sensor, is
affected by changes in the test gas composition, so the
sensor output may be smaller than that for a sensor with
separated electrodes. In another case [65, 66], deposition of
WO3 on both the Pt and YSZ in a planar configuration was
found to improve sensor response. The improvements were
attributed to an interfacial layer inhibiting catalysis, which
would increase the overpotential and thus increase the
response as discussed above.

Another commonly used electrode material for NO2

sensors is NiO, and the outputs of some sensors with NiO
electrodes and YSZ electrolytes are shown in Fig. 11 [68–
72]. As with the CGO-based CO sensors in Fig. 7, the
magnitude of the response decreases with increasing
temperature, which is expected for a sensor based on
kinetic limitations, since those kinetic barriers are more
easily overcome with the increased thermal energy at higher
temperatures. The temperature dependence is also shown
by the comparison in Fig. 12 of the sensitivities (millivolt
per decade) of NO2 sensors with WO3 and NiO electrodes
[41, 42, 59–63, 69–75].

According to Fig. 3a, a positive sensor response to an
oxidizing gas, like NO2, indicates an increased over-
potential for the oxidation of O2−. The anodic polarization
curves for doped and undoped NiO electrodes in Fig. 13
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show that the overpotential for O2− oxidation is increased
with cobalt additions, but decreased with chromium
additions [75, 76]. Figure 14 shows, consistent with
Fig. 3a, that the increased overpotential (i.e., Ni0.9Co0.1O)
generates a larger response, while the decreased over-
potential (i.e., Ni0.95Cr0.03O1-δ) leads to a smaller response
[71, 72, 74–76]. A similar increase in both polarization and
sensor response has been observed with the addition of
CuO to NiO [77].

There have been some reports of NO2 sensors with
responses that are opposite in sign to those of the WO3- and
NiO-based sensors discussed above. In particular, negative
potentials have been observed for La0.8Sr0.2FeO3 [41, 42,
60] and La2CuO4 [43] sensing electrodes with Pt reference

electrodes and YSZ electrolytes. Because these are both p-
type semiconductors, as compared to WO3 which is an n-
type semiconductor, the opposite signs of the responses
have been related to the semiconductor nature of the
electrode materials. However, NiO [78] as well as lantha-
num chromite [79] and (La,Sr)(Co,Fe)O3 [80] are also p-
type semiconductors and generate a positive response when
used in NO2 sensors, as shown in Fig. 15 [41–43, 69, 81–
83]. Although the p-type conduction does not alone explain
the opposite sign, there is a difference in the response
mechanism.

The response of sensors with La2CuO4 electrodes has
been attributed to an absorption mechanism [43] based in
part on infrared and X-ray photoelectron spectroscopy,
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which indicate that absorbed NO and NO2 species lead to
anionic species on the La2CuO4 surface [84]. The adsorbed
species are suggested to lead to the formation of oxygen
vacancies with electrons for NO adsorption and holes for
NO2 adsorption, which cause shifts in the Fermi level. The
maximum response occurs at the same temperature at
which NO2 is reduced on both Pt and La2CuO4 surfaces
as indicated by TPR results. The response decreases with
increasing temperature, but a response is observed at
temperatures at which TPD results indicate that most of
the NO and NO2 would have desorbed from the surface.
There is a recent report of a NO2 sensor based on the
surface plasmon resonance of Au nanoparticles in a YSZ
matrix [85], which suggests that NO2 adsorption could
affect the electronic state in the electrode. In addition,

although generally considered to cancel out for symmetric
Pt electrodes, the chemical potential of electrons in the
electrode contributes to the measured potential of an
electrochemical cell [11]. Changes in the Fermi potential
could generate a sensor response, but for that response to be
measured with a solid electrolyte, the change in potential
needs to be related to the mobile ions in the solid
electrolyte. This interaction would occur by redox reactions
at the YSZ–La2CuO4 interface, which could be established
by a mixed potential mechanism. According to TPR results,
the reduction rates of NO2 on Pt and La2CuO4 are similar
[43]. However, the presence of adsorbed species or related
inhibiting gas–solid interactions could affect the polariza-
tion behavior of the electrode, similar to the way that mass
transport limitation can lead to concentration polarization,
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and establish a mixed potential on the electrode surface.
The observed negative value of the response voltage would
suggest that, according to Fig. 3b, whatever the inhibiting
effect, the NO2 reduction reaction is affected more than the
O2− oxidation reaction.

Electrode microstructure is particularly important in non-
equilibrium-based sensors, since factors such as surface
area and morphology affect reaction rates. For example,
small grains [86] or small particles [87] have been shown to
improve response. However, the effect of surface area in a
non-equilibrium potentiometric sensor is different from that
in many other sensors, such as semiconductor resistance-
based sensors where high surface area is desired to enhance
gas–solid interaction. For a mixed potential sensor, an

increase in the electrode surface area would increase the
rates of both reactions, so, at least under activation
polarization, the mixed potential would not be changed.
However, if the reaction was under concentration polariza-
tion, the rate would be limited by mass transport from the
bulk gas to the electrode surface, which would not be
affected by the increased surface area. Thus, a mixed
potential between one reaction under activation polarization
control and another under concentration polarization con-
trol can be affected by a change in the electrode surface
area. For example, a NO2 sensor based on two platinum
electrodes with different surface morphologies responded to
40 ppm NO2 and generated a signal of 80 mV at 800 ppm
NO2 [88].
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The usual approach in electrochemical devices is to have
a dense electrolyte to separate the gases at the two
electrodes with porous electrodes to increase the active
surface area. However, in the case of mixed potential
sensors, separation of the gases is not needed and high
reaction rates are not desired for all reactions. Thus, sensors
with porous electrolytes and dense La0.8Sr0.2CrO3 [82, 89,
90] or (La,Sr)MnO3 [39] electrodes have been reported.
The advantage of the dense electrode is that heterogeneous
catalysis by the electrode is minimized due to the low
surface area, while the porous electrolyte allows for gas
transport to the electrode–electrolyte interface.

Conclusions

Non-equilibrium-based electrochemical sensors provide the
ability to sense gases, such as NOx, CO, and hydrocarbons,
that are difficult, if not impossible, to measure with
equilibrium-based electrochemical sensors. The theory most
often used to describe the sensing mechanism is the mixed
potential theory, for which the sensor output is based on a
steady state between four different electrochemical reactions.
The sensor response is most often attributed to differences in
the overpotential for oxygen reduction or oxygen-ion
oxidation, but this explanation does not explain all observed
sensor responses. Processes, such as adsorption, may inhibit
the electrochemical reactions at the electrode surfaces, which
may increase overpotentials and thus affect the electrode
potentials. The multiple factors that can affect the outputs of
non-equilibrium sensors provide opportunities for the devel-
opment of new sensors, but also create challenges in
understanding and controlling the sensor responses.
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